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NAVSPASUR Direction Cosine Processing

Daniel Solomon

Abstract

This report is a description of the NAVSPASUR Operations Center process of re-
ducing the receiver station data to local direction cosines for the (new) St. Andrew's
cross stations, a configuration for which most of the antennas have their phase cen-
ters aligned along north-east and south-east directions. The following observational
parameters are also determined: d. ection cosine rates, Doppler, and chirp

Most of the main steps involved are the same as for the older cruciform stations,
whose antenna phase centers are aligned along north-south and east-west axes. This
algorithm has recently been modified by the Analysis and Software Department of
NAVSPASUR for use with the St. Andrew's cross configuration. The direction cosine
algorithm uses a walkup and least squares as before, but differs due to the antenna
configuration. Those modifications were in effect by January 1, 1990, the freeze date
for this report. It is hoped that the present report will elucidate the NAVSPASUR
direction cosine processing for the surveillance community. A detailed error analysis
of the steps involved in the direction cosine determination processing is in progress
and will be issued eventually. Most of the present report will be incorporated into a
longer one describing the NAVSPASUR Operations Center process of satellite element
updates.
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Introduction /

The NAVSPASUR sensor is a multistatic continu/us wave radar system with nine stations
(three transmitters and six receivers) located alo4g a great circle path, inclined 33.57 degrees
to the equator across the southern United States,(see Fig. 1). The main transmitter is at the
Kickapoo Lake Station, and the wing transmitters are at Wetumpka and Gila River. The
transmitters broadcast fan-shaped beams at 216.98 MHz, and the unsynchronized beams
combine to form the NAVSPASUR fence, which is very narrow in the north-south direction,
but very wide in the east-west direction. When an object such as a satellite enters the
fence a small fraction of the transmitted radio energy is reflected to one or more of the
receiver sites. Interferometric techniques are applied to determine the angles of arrival of
the reflected signal at each receiving station.
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Figure 1: Map of NAVSPASUR facilities

The data from all receivers are collected in real time and fed via dedicaf'e telephone lines
directly into the central data processing system at the NAVSPASUR Operations Center in
Dahlgren, Virginia. At the Operations Center data from each receiving station is reduced
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to local direction cosines for each object, along with cosine rates, Doppler and chirp, statis-
tical measures, and time stamps. The NAVSPASUR Operations Center maintains satellite
element catalogs, which are updated with the reduced data. A broad overview of the Oper-
ations Center processing is given in the flow chart of Fig. 2. The main part of this report is
a detailed description of the box labeled "RESOLUTION."
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- Satellite ID
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Known Obs CYBER 760
Database s

SHARED DISK Cpdate Fleet SupportI
- Elements NORAD, Etc

FElement Set-j Data base

Figure 2: NAVSPASUR Operations Center data processing

The local coordinate system, called East-North-Up, is defined by its unit coordinate
directions. Up (z) is in the direction of the local vertical as established with a plumb line
at a point at the station, and the antennas are in a perpendicular plane, established with
a laser survey. East and North coincide with the directions formed by the antenna phase
centers in the cruciform array shown in Fig. 3 (not to scale). Moreover, East (x or E) lies
in the plane of the great circle and is tangent to it; North (y or N) is perpendicular to
the great circle. If a satellite is in the direction R, from the center of the receiving station,
then the East and North direction cosines for the satellite are defined by E • Rs and N • R,,
respectively. These quantities are the cosines of the angles formed by R, and the coordinate
axes, and are the fundamental observation parameters used.
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Figure 3: Typical low altitude Cruciform station configuration (not to scale)

The physical deployment of the antennas is intended to allow for the unambiguous deter-
mination of direction cosines from the station to the satellite. The antennas are configured
as an array of collinear half-wave dipoles and are positioned to form interferometric base-
lines of varying lengths. For each antenna the radio frequency (RF) signals from all of the
dipoles are combined coherently (since the antennas are in a plane) and directed through
an analog filter into a preamplifier. The filters are designed to remove specific signals from
local transmissions and do not exist at all sites.

Four of the receiving stations are intended for detecting low altitude satellites, and the
other two are for high altitude satellites. NAVSPASUR has recently undertaken a program
to convert the antenna array configuration from the cruciform to the St. Andrew's cross.
The low altitude St. Andrew's cross stations are illustrated in Fig. 4. They are composed of
twelve antennas 400 feet long. The high altitude stations are composed of ten antennas each
2400 feet long. The antenna configurations for low and high altitude differ only in the lack
of antennas 2 and 3 at the high altitude stations. Antennas 1 and 4 overlap by 1200 feet in
the high altitude stations. We shall use the name N to mean the number of antennas at
the receiving station under consideration (ten or twelve).

The fundamental quantity measured by the NAVSPASUR sensor system is the set of
signal phases received at each antenna at a given receiving station. The raw phases from
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Figure 4: Low altitude St. Andrew's cross station configuration

each of the antennas are combined to produce phase differences, each taken with respect
to the designated reference antenna. In an interferometer system these relative phases are

caused by differences in the arrival times of the signal at the different antennas. The basic
problem is: given the antenna layout and the measured phases, determine the satellite

direction.

For a given satellite pass up to 55 frames of signal phases are recorded3 at a 54.93 Hz

sample rate, allowing the determination of satellite cosine rates, which are time derivatives

of the direction cosines. The Doppler and chirp of the received signal are also determined.

4



Each receiver station has a primary and secondary receiving system assuring that in
the event of equipment failure the station is still able to perform in its primary mode.
The primary mode is the full Doppler processing mode, which makes nearly all of the
system's target detections. If only one system is operational, that system is designated the
primary system. The secondary system, when available, performs in the half and quarter
Doppler processing modes, which were designed to detect the fainter signals of higher altitude
satellites. The pertinent details of the full Doppler processing mode will be discussed. The
half and quarter Doppler processing modes and the secondary system as a whole will not be
treated.

The diagonal arms of the St. Andrew's cross are at 450 angles to the east-west direction.
These directions are referred to as L1 and L 2 for northeast and southeast respectively. The
direction cosines determined with respect to L1 and L2 are called el and t2. For historical
reasons east-west and north-south direction cosines are desirable. The transformation is
accomplished as follows:

I
-= -£ + 12)

M2 = I- £2)()

where m, and M 2 are the east-west and north-south cosines.

Other observational parameters are determined, including the direction cosine rates,
Doppler and chirp. This suite of processing is collectively referred to as direction cosine
processing. An overview of the direction cosine processing is shown in the flowchart of Fig. 5
and may be summarized as follows:

" Choose an observation time'at which to set the estimates.
" Smooth the phases and determine the direction cosine rates with least squares.
" Determine the direction cosines with walk up and least squares.
" Determine the Doppler and chirp with an FFT and least squares.

5



Doppler bin

ADDAS Antenna strengths
Time tag
55 frames of

Frame strength
10 or 12 phases

Smooth Resove! __ Doppler and

Phases Cosines - Chirp

Obs time Direction cosines Doppler
Smoothed Phases Chirp
Cosine rates

Satellite ID

Figure 5: Direction cosine processing overview

Section 1 is an overview discussion of the principles of interferometry including an es-
timate showing that the receiver interferometer near field effects on antenna phase do not
cause significant errors in the direction cosine determinations. The format of the phase data
which arrives at NAVSPASUR is described in Section 2. Details on the observation time are
in Section 3. Smoothing the phase data and determining cosine rates are described in Sec-
tion 4. The detailed description of the direction cosine processing is contained in Section 5.
The Doppler and chirp calculation is described in Section 6. An appendix summarizes the
least squares formalism. Items within square brackets refer to bibliography entries at the
end.
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1 Principles of Interferometry

A comprehensive description of interferometry may be found in [Kra-s] and [Tho]. The
simplest interferometer consists of a pair of antennas characterized by the vector from the
reference antenna to the remote one. This ,ector b is called the baseline. In the limit where
the source of the radiation is infinitely distant (known as the parallel rays assumption), a
plane-wave signal is received at each antenna with a relative phase difference which depends
on the direction to the source of the radiation. This is illustrated in Fig. 6.

/ /
/ /

/ /
/ /

K /
p / \/s /

./ \ /
/ \ /

b

Figure 6: Two-element interferometer

The angle 0 to a radiating or reflecting sattelite is given by

cos 0 = p - = (2)

b b

where 9 is the unit vector in the direction of the satellite, b = Ibl, and p is the path length
difference from the source to the two antennas. If the received voltages are expressed as
v0 and v, = voe"2"7, then under the assumption of parallel rays the phase difference 27r0
between the received voltages at the antennas is 27rp/A, where A is the wavelength of the
received radiation. In terms of measured quantities the direction cosine is given by

cos 0 = 0. (3)

The error in the cosine due to phase measurement error is

A
dcos 0 = bdO,
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indicating that longer baselines give cosine estimates with smaller errors. On the other hand
this phase difference 27r is directly measured only up to a multiple of 27r. As a consequence,
cos 0 is ambiguous by multiples of A/b. This is known -s the cosine ambiguity. If two sources
were situated with direction cosines differing by A/b, they would produce identical phase
difference data on the antennas. This means it is impossible to determine from phase
measurements whether a given target has a direction cosine x or x + kA/b for k an integer.
The interferometer is also said to have grating lobes spaced at intervals of A/b, although the
phrase is usually reserved for ambiguities in the multi-antenna case. Direct phase difference
measurement can be accomplished if the baseline is shorter than one wavelength.

As will be seen, a solution to the competing needs for short and long baselines is based
on beginning with a short baseline, and applying the walkup through longer baselines. This
overcomes the ambiguity and yields the intrinsic accuracy of long baselines.

The parallax effect due to the satellite being in the near field of the interferometer
receivers does not cause trouble with the direction cosine estimates. Parallax arises as the
error in the measured phases due to the parallel rays assumption and may be estimated with
trigonometry. (See Fig. 7). Let R, R0 , and R1 be the slant ranges to the satellite from the
center of the interferometer and the nearer and farther antennas respectively. Then

= R2 +b 2/4 + bRcosO

R 2= R 2 +b 2/4-bRcosO

A b/A
b

Figure 7: Near field interferometer effects

so that

- 2/4 + bRcosO b2/4 - bRcosO
(R-R)/R2= 1± 2
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The square roots may be approxiiitated by an application of the binomial expansion:

+~~ ~ 1)/ X-IX2 1 X3

2 8 16

which after simplifying and discarding terms of order 4 in b/R yields

R0 - R'- bcos 0 - I b cos 0 sin 2o.
8 R

2

The estimate for cos 0 is Eq. (2):

Cos0 - R0-R, Cos0 1 b2cosO=. . ..co - ,-s sin2  0.
b 8 R 2

The random variable cos 0 sin 2 0 has a mean of zero and a standard deviation of 1/2v2-. This
means the error is unbiased and has a standard deviation of P- , which for the case of a

16\/-R2~

baseline of 12000- feet and a satellite range of 100 km, is less than 1.2. 10- 6, more than two
orders of magnitude smaller than the nominal rms cosine error of 0.00025. So the parallel
rays assumption is valid for all St. Andrew's cross baselines and all satellites.

9



2 Data Format

At the receving stations the Interferometer Subsystem (IS) measures the complex voltages
received from an object which is illuminated by one of the transmitters. Subsequent data
processing (to be discussed) determines the amplitudes and phases of the signals.

The IS includes three digital filters (DFs), which are narrow band filters passing only
the selected frequency component by means of a discrete Fourier transform (DFT). Tuning
a DF is equivalent to selecting the frequency to be passed. For each target a particular DF
is tuned to the Doppler frequency of the selected target. The tuning consists of storing the
appropriate coefficients for multiplication by the sample values. Each DF receives all of the
data samples from all of the antennas. The multiplexed data is received at a 1.2 MHz rate, or
75 kHz for a single antenna's data. In a particular DF, sample blocks are created consisting
of 4096 consecutive samples from each antenna. Collecting 4096 samples from each antenna
requires 54.61 msec. The data from each antenna is overlapped three-to-one, which means
each sample becomes a member of three blocks, and one block for each antenna is completed
every 18.2 msec. This is illustrated in Fig. 8. (Since 4096 is not evenly divisible by three,
a new block is started after each of two consecutive strings of 1365 samples and another
block after 1366 samples with the sequence repeated.) Each block is windowed with a four-
term Blackman-Harris window,' and a single output discrete Fourier transform (DFT) is
performed on the windowed block. A single complex output, the voltage, is produced every
18.2 msec for each antenna. The overlap implies that the voltages have correlated error. A
maximum of 55 data samples is obtained for each target.

1365 11365 1366 1365 11365 11366 11365 .

frame 1

frame 2

frame 3

Figure 8: Schematic of data from one antenna

The noise bandwidth for each output bin of a DFT performed on 4096 samples obtained
at a 75 kHz sampling rate with the 4-term Blackman-Harris window is 36.6 Hz with bin
centers at intervals of 18.3 Hz, so that at worst case, a satellite could be 9.15 Hz away from
bin center. The received frequency varies during a satellite pass with a typical Doppler rate

1This windowing process reduces the side-lobe levels to -94 dB
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of -20 Hz/sec. This is compensated by tuning the DF one bin below the bin in which the
target was detected.

Each set of N complex voltages is converted to N phases and one representative am-
plitude. This comprises one frame of data. The full set of frames for a satellite pass is
accompanied by a header frame, a set of integers representing the relative antenna strengths.
The production of all of these numbers will now be described.

The reported amplitudes and antenna strengths are calculated as follows: Let

s,(n) = IxI + y for i= 1,...,Na
andn= 1,...,55,

where x and y are the real and imaginary parts of the complex voltage at antenna i for the

nth frame. The amplitude for the nth frame, S(n), is the olympic average2 of the amplitudes

at all the antennas (the si(n)), expressed in dB above 1 mW as

ia(n) = -[20 log S(n) - SBIASI,

where [.] is the greatest integer function, and SBIAS is a system constant for scaling. These
integers, ia(n), are the amplitudes (typically they are between -160 and -118 dBm). With
S = S S(n), and C, = En si(n), the antenna strengths are given by

ianti= 20 log - - + 32],

limited to the range 0 to 63. The ratio Cs/S is the amplitude ratio for the ith antenna, and
the additive constant (32) is introduced to bias the numbers away from zero.

After these numbers have been produced, a determination is made of how many frames
to send to the Operations Center: the numbers S(n) are tested in reverse order until a value
of S(n) is above the threshold. Let

Nf = max{n: S(n) > Threshold}.

The frames from 1 to N are transmitted.

To accomodate data transmission the phase at each antenna is quantized to 6 bits, as
follows: For the first N frames, the receiver software converts (x, y), the real and imaginary
parts of the complex voltage, to a phase (an integer in [0, 631) using

--[8 +.5 for 0 < y <x.xx

2The olympic average of a set of numbers is obtained by deleting the largest and smallest numbers and
taking the arithmetic mean of the remainder.

11



The range given covers only the first octant; the second octant is deduced from

tan- ' z = 7r/2 - tan- ' 1/z for z > 1,

which yields
= 6-[8x +.5 for 0 < x <y.

Y
The rest of the complex plane is handled with simple trigonometry. The error for the noise-
free case, e(o) = € - 640 (0 in rotations), is shown as a function of tan- ' y/x = 2ir€ for the
first quadrant in the plot of Fig. 9. The error function is identical in the other quadrants.

2r

0 I

oV J ~ '

-2 T T

0.0 ir/4 7r/2
are tangent

Figure 9: The phase error in the receiver software in counts, for 0 < tan- ' y/x < 7r/2.

The error is sometimes larger than one count (one count is 5.635°), even without noise.

The data sent to the ADDAS at the Operations Center begins with a header line contain-
ing the receiver doppler bin number, A set of integer antenna strengths, and a time stamp.
Each data frame consists of an integer representing the amplitude and twelve integers repre-
senting the antenna phases. A typical data record is included as Table 1. The ADDAS is the
interface between the telephone lines and the Operations Center computer which processes
the phase data. At the Operations Center the integer phase is divided by 64, expressing the
phase in rotations E [0,1). We will use the notation ¢j(n) to mean the phase at antenna
i for the nth frame. At the Operations Center the ianti are converted to amplitude ratios,
wta,, which are used as antenna weights,

wta, = 1 0 .l iant,-3 "2 .

The -3.2 removes the previously applied bias.

12



Table 1: Typical satellite pass.

-934 [34 34 31 28 32 31 30 28 34 33 32 30 890404 900110.901
-139 14 47 19 61 61 18 36 42 2 13 57 20
-139 35 3 43 16 17 39 61 0 28 34 15 44
-138 57 25 63 37 39 61 16 21 47 52 34 1
-136 13 44 18 54 58 15 34 40 1 5 51 21
-135 28 61 35 8 12 34 51 57 18 22 3 39
-135 45 14 50 23 27 50 3 9 34 36 19 54

-135 58 26 2 36 41 0 17 23 49 49 32 6
-134 7 37 14 51 53 11 31 34 61 61 45 19
-134 17 49 25 62 0 23 41 46 9 5 55 32
-134 27 59 34 7 10 32 50 55 17 14 0 41
-134 33 1 43 15 16 40 59 63 26 19 6 49
-135 39 7 47 18 22 46 0 4 31 24 13 56
-135 45 13 51 24 28 49 5 10 35 27 16 61
-136 47 15 54 28 30 53 8 14 39 30 18 0
-137 48 17 56 29 31 53 9 15 41 29 18 2
-138 47 16 54 28 30 53 8 14 38 26 16 3
-139 45 15 52 22 29 51 5 11 37 22 15 1

-141 42 12 49 21 25 48 2 6 33 18 13 63
-142 36 4 46 18 18 43 62 4 30 12 3 59
-145 31 63 40 15 14 33 53 61 24 4 59 52
-148 24 56 32 2 4 27 48 55 17 58 51 42
-151 15 47 22 59 63 19 42 44 12 47 41 37
-155 2 51 6 44 53 9 33 35 4 36 34 31
-157 29 33 53 36 50 0 25 28 58 43 33 26
-157 56 61 55 12 38 52 14 14 37 19 16 20
-153 47 5 50 52 26 60 58 9 31 13 4 10
-151 20 57 33 1 3 35 50 0 19 54 54 53
-151 8 40 13 49 51 17 28 35 63 34 30 34
-151 46 20 60 30 33 52 12 22 38 10 13 12
-151 22 60 35 11 15 35 58 56 16 49 54 54
-151 1 33 12 55 49 16 25 29 1 25 21 34
-153 32 2 56 27 28 44 2 16 32 63 61 6
-154 14 47 17 4 61 26 33 40 0 29 33 40
-153 49 17 53 48 22 49 12 5 43 10 55 17
-158 5 49 21 45 12 21 28 48 1 35 35 42
-156 8 16 8 26 29 40 1 0 33 21 62 16
-155 10 47 5 6 35 37 48 56 28 20 44 38

13



3 The Observation Time

A specific frame is selected at which to base the direction cosine estimates. It is desirable
that the frame (called NFTO) be at a time when the amplitude of the signal is high, and that
the satellite north-south cosine be near zero. The algorithm for the selection of the frame
NFTO follows: Let the integer NF1 be the number of the frame which is the first occurrence
of the highest amplitude. Integer NF2 is a weighted mid-point for the satellite pass which is
defined to be the maximum M satisfying

M wtf <

n=1l n=l

where N is the number of frames in the pass. The desired frame, NFTO, is the truncated
average of NF1 and NF2. The observation time is the time of frame NFTO.

The weight function will be used in the phase smoothing, and is obtained in the following
manner: let ia = ia(n) be the amplitude for the nth frame, then let

[10- l ia - 16 , if _a > -160;
1 otherwise

(x is inversely proportional to the amplitude down to -160 dBm); then the weight wtf, for
the th frame is 1

wi=o ci Xi + 0.00452

where the coefficients are given by

co = 0.000135
cl = 0.016142
c2 = 0.313793
c3 = -1.174551
c4 = 1.357612
c5 = -0.374264,

and 0.0045 is 1/64th of 1/v_12, the standard deviation of the error due to 6 bit quantization
of the unit interval, [0, 1]. The form of the weight function was determined by Mr. Richard
Smith (private communication), the head of the NAVSPASUR Analysis and Software De-
partment, since retired. He used a polynomial fit of the variance vs. amplitude for the data
taken at the beginning of Phase 4 of the Modernized Receiver System. The weight function
is shown in the plot of Fig. 10.
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Figure 10: The weighting function of frame amplitude

4 Cosine Rates and Smoothed Phases

The center of the antenna array is selected as the reference point. An iterative, weighted
least squares differential correction procedure is performed on the phase data to produce
smoothed phases on all the antennas at frame NFTO, and for all the frames at the reference
point (but see the next paragraph. The latter is called the phase profile. The differential
correction also provides satellite direction cosine rates. All of this is described in this Section.
The smoothed phases at the time of frame NFTO are used to calculate the direction cosines
in the next Section. The use of the phase difference profile to determine the Doppler and
chirp is discussed in Section 6.

The cosine rates and smoothed phases are determined in two or three least squares
iterations. As will be seen, the phase profile is not directly solved for; rather the differential
correction determines the phase difference profile, the phase profile minus the phase at NFTO.
Usually three steps are performed, but during heavy traffic, provision is made to limit the
processing to two iteration steps. Also, as will be described, if after the second iteration,
the estimates are good enough, there is no third iteration. The following description is
summarized as the flow chart of Fig. 11.

In the first step only the phases at NFTO, 4i 41 4'(NFTO), and the cosine rates are adjusted;
0.0 is used for the initial values of the cosine rates. The measured phases at all N antennas
for all N frames are the observations; the calculated values from the model are given by

c,(n) = 0, + A4(n) + rzt. + rh2y,t,

where

15



0i = Oi(NFTO) is the model phase at antenna i at the observation time,
rh1 and rh2 are the east-west and north-south cosine rates,

AO(n) = Oref(n) - Orf is the model phase difference profile,
0,ef(n) is the phase profile, the phase at the reference point for the nth frame,

xi and yi are the antenna coordinates with respect to the reference point,
and tn is the time difference between the nth frame and NFTO.

Only the first two are adjusted in the first iteration.

ITLIM = 2 or 3, depending on traffic
ITER = 1 T.1 = oo

Til = rh2 = 0
AO(n) = ref(n) - Oref(IFTO)

Form and solve system suITER o phn° Form and solve system
of order N,, + 2 ? of order < N, + N6 + 2

Correct Oi, in,, ri12 including obs meeting tolerance

I 
~Correct 

.0i, AO(n), rhl, rh2

SITER = ITER + 1 no IE TI

Set tolerance et m t s O

SRrd variances
Calibrate i I

Figure 11: Flow chart summary of phase smoothing and cosine rates.
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The term least squares means a process of minimizing a squared difference. The most
common example is fitting a curve to measurements, but there are many scientific and
engineering applications of the technique, which may be viewed as a generalization of the
curve-fitting problem. The theory is developed in many places including pp. 123-5 of [Bate]
and is summarized in an appendix.

The least squares correction process requires the solution to the equation

A t WA AP = A t W(O - C),

where A is the matrix of partial derivatives of calculated values with respect to the param-
eters:

Oci(n) - _ Oc,(n) - (xityt,).
10j 0(rhl, rh2) =(i",ytJ

A is given by

A= IN. xt 2  yt 2

IN. itNf YtN

where IN represents the identity matrix of order N, and " and W are the column vectors
of the x and y coordinates of the antennas. The weight matrix W is diagonal with entries
equal to the relative weight assigned to each observation,

W = diag {wtl,,,... , WtNlv wtl,2 , ... , Wt ,2., wt , } •

Here wt,,i is the weight assigned to the phase measurement at antenna i for frame n, and is
given by the product, wtf, wtaj, of the weight for frame n (determined in Section 3) and the
weight for the i h antenna (Section 2). AP is the vector of improvements to the parameters
P, and 0 - C is the vector of residuals, Oi(n) - c2(n), which are normalized to (-0.5, 0.51
by adding or subtracting 1, which avoids the usual difficulties in unwrapping the measured
phases.

The matrix AtWA is known as the inverse covariance matrix because when the weights
are the reciprocals of the variances of the observations, (AtWA) - ' gives the covariance
matrix for the new estimates. In particular, its Zth diagonal entry is the variance (square of
the standard deviation) of the adjusted estimate of the ith parameter, Pi + APi.

AtWA may be expressed as a block matrix

AtWA= M 1 1 iM 1 2

m1 2 t Mn2 2

17



where mn is diagonal, N x N, with element ii given by _,, wt~i. The Na x 2 matrix

rn1 2 = Zwtnitn(x i Yi),
n

and

Mn2 2 = E E tit 2 I 2i n xiYi yZ

is 2 x 2.

The vector At W(O - C) has N + 2 elements

En ,wtni(¢i(n)-ci(n)) x

Yi

with the residuals, (¢i(n) - ci(n)), normalized to [-.5,.5].

The block structure of AtWA makes the matrix inversion fairly straightforward, resulting
in adjustments to be made to Oi and the cosine rates.

The second iteration begins with the adjusted values as well as the unadjusted history
of phase differences AO(n), which are now also to be adjusted. The calculated values take
the same form:

ci~n) = €i + A¢(n) + rhlxit,, + rh2yit,.

The matrices involved are considerably larger than on the first iteration, since there are N.

more parameters. Also, only observations meeting the tolerance, i.e., that

Wtni I0i(n) - ci(n)12 < To1,

are included in the sums, where

T.1 = 4 max {NN 2 'l}

and S 2 = Ei En wtni (Oi(n) - ci(n)) 2 is the weighted sum of the squared residuals from the

first iteration. The matrix A now includes the partial derivatives

o9ci(n) =
OJOq(i) ntnm,

so A is given by
IN. E, it, it,
IN. E 2  Yt 2  yt2

IN. EN , tNJ )
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where Ek is the Na x N1 matrix whose kth column is all Is, and the other entries are 0.

The submatrix mil is no longer diagonal, and now of size N + N x N, + Nf, in the form

(n, En wtni wtn,
S (wti) -- wtn

where wtni (unsummed) represents the N x N block of individual weights. Also

(1 En, wtnit(xi yi))

re1 2 = Eiwtt(xi y,) '

is of size N + Nf x 2, and M 2 2 is as before.

The vector A t W(O - C) has Na -- Nf + 2 elements

Ei wti (Oi(n) - ci(n))

Ej E ,nwt-t (¢i(n) - ci(n)) Xi

At the Operations Center an approximation to AtWA is made; rnll is taken to be diagonal:

E -n Wtni O i n )

mxx = Oni E[i wtni

where Okj represents the k x j matrix of zeroes.

If En Wtni = 0 for some i, meaning none of the phase measured at antennF met the
tolerance, or Ei Wtni = 0 for some n, meaning none of the phases measured at frame n met
the tolerance, the matrix AtWA as given would be singular. Instead the system of equations
is purged of the row and column containing the term.

A third iteration is made if traffic has not been too heavy, and if the dot product of the
quantities AtW(O - C) and the applied correction is more than 20% of S 2, the weighted
sum of the squared residuals which met the tolerance during the second iteration. If a third
iteration is to be made, a new tolerance is computed:

4max S2 NN. 2) ,}

So(o-Nf -N. - 2

where So is the number of observations that met the tolerance in the second iteration.
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The variances, Vari, of the estimates of O'i are set to numbers proportional to the diagonal
elements of (AtWA)- 1 and recorded, so that new weights for the antennas can be used for
direction cosine estimation.

The resulting phases, Oi, are calibrated by subtracting the calibration phases. The
adjusted (and calibrated) values will be referred to with the same symbols, Oi for the N
phases at frame NFTO (whether normalized to [0, 1] or to [-.5,.5]), rh, and rh 2 for the
direction cosine rates, and Ao(n) for the phase difference history at the reference antenna.

5 Direction Cosines

The walkup technique is a systematic step-by-step resolution of the direction cosine from
the phase differences, beginning with an estimate due to the phase difference on the shortest
baseline and adjusting the estimate in steps through sequentially longer baselines. The
procedure is performed on both arms of the St. Andrew's cross to determine the direction
cosines with respect to each of the arms. In this Section the theory is explained and then the
implementation. The direction cosines thus determined are improved with a least squares

differential correction procedure.

5.1 The Walkup Method

This algorithm has recently been modified by the Analysis and Software Department [Bales]
of NAVSPASUR for use with the St. Andrew's cross configuration. Let 6k = bi/A be the ith

baseline (in wavelengths) in ascending order of length, and let 0, be the calibrated phase
difference in rotations between the phases measured on the two antennas comprising baseline
b,. In the Operations Center software, the phase differences are normalized to [0, 1], but we
shall assume Oi E [-.5, .5], which makes the description easier. The initial estimate of the
direction cosine is as given in Eq. (3): cl = 01/b1 . The iteration step of the walkup is as
follows: Assume we have ci- 1, the cosine estimate after processing baseline i - 1. and let
4I = ci-ib, and i = [ 0] + Oi. If the absolute value of 4 - (D is greater than 0.5, then (D
is adjusted toward t by +1. The quantity f is the total phase difference on baseline b,,
composed of an integer, [(I], and fractional part, 0j. The new cosine estimate is given by
ci =

In order that cl be uniquely determined from the phase difference on baseline bl, i.e., that
there be no cosine ambiguity at the first step, it is necessary that c: = (q 1 ± 1)A/b represent
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values larger than 1/V'2 which are unphysical, since direction cosines on the diagonal base-
lines are between approximately 450 and 135'. The condition is met provided bi < A/vr.
Similarly, in order to avoid an ambiguity at each step in the walkup procedure, it is necessary
that the sequence of baselines (b1) grow slowly. The error in 4) is b1/bi_, (= b/b-_1 ) times
the error in the phase difference, Oi. The restriction that bi/biI < 2 keeps the error on
low enough, it is hoped, to determine the integer [4D] correctly sufficiently often.

5.2 Implementation

Physical baselines along L1 and L 2 do not satisfy the conditions: the shortest is 20v-2 feet,
and there are ranges where we would have bi > 2bi- 1 . The lists of baselines for L1 and L2

are in the first columns in each half of Table 2. This is overcome with virtual baselines,
created using second (and more) differences. For example, there are baselines along L 2 of
20V - and 44v/'2 feet, whose phase differences can be differenced to form a virtual baseline
of 24Vy- feet.

A virtual antenna, V1, is introduced to fill the missing corner, at the point (1200, 1200)
(see Fig. 4), with a phase (in this paragraph we are using Oi for the phase at antenna i
rather than the phase difference on baseline b3.)

Ov, = fractional part(O1 + 412 - 04),

and variance
Varvy = I (Var 1 + Vari 2 + Var 4),

which may be compared with the theoretical value

Varv = Var, + Var 12 + Var4.

The L1 baselines ad, th antenna V1 are shown in the second column of Table 2. Another
virtual antenna, V2, s introduced at the center of the X; it will be assigned a phase equal
to the average of the phases at antennas 1 and 12, i.e.,

2 2
and variance

Vary 2 = (Var + Var 12 ),

which may be compared with the theoretical value

1
Varv2 = I (Var, + Var12).

4
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Table 2: St. Andrew's cross baselines

L1  Using Using Using L2 Using Using
Baseline V1 V2 L2  Baseline V2 L1

1200 1200
1110 1180
1082 1136
916 912
888 892
830 848
636

600 600
510 580
482 536
406

370 312
280 288
252

230
194 194

118
90

64 64

44 44
28

20 20

18
16
14
12
10
8
6
4
2

The above are multiplied by v/2
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The baselines added with antenna V2 are shown in Table 2.

As indicated Ov2 is ambiguous by ±0.5: suppose 01 = -0.4 and 0 12 = 0.4; then one
can have Ov2 = 0.0, but OV2 = ±0.5 is equally possible. This has assumed the O, are
normalized to [-0.5,0.5), but other normalizations are analagous. Actually the il walkup
begins without a value assigned to Ov2. The phase differences for baselines including V2 are
tentatively chosen based on whatever value Ov2 happens to have (random). Near the end of
the 4, determination, 4v2 is recomputed. We will see that there is no harm in this.

A total of 42 baselines are used in the walkup, 31 for 41 and 12 for 12. Three of the L 2
baselines are used on L1 ; these are 20, 44, and 64 feet (times Vr). If it is true that at frame
NFTO, the north-south direction cosine is small, then from Eq. (1) we must have that fl -- t2.

In this case, the phase differences which would be produced on short baselines on L1 and
L2 will be approximately equal. This is the justification for using short L2 baselines as if
they were along L 1. As will be seen the rather longer L1 baseline of 194v'2 is used for the
first £2 walkup step. The last columns in each half of Table 2 show the baselines contributed
through the use of L1 and L 2 baselines (and virtual baselines) on L 2 and L 1.

The algorithm for determining the direction cosines from the smoothed phases at the
reference time (frame NFTO), as described in the rest of this Subsection, is summarized as
the flow chart of Fig. 12. The list of the phase differences used for the baselines is shown in
Table 3, where the common factor of Vr has been suppressed. The shortest baseline used
in NAVSPASUR direction cosine processing is 2V2 feet which is sufficient to avoid a cosine
ambiguity at the first step, i.e., satisfies the condition b, < A/v2_, since A is more than 4
feet. With this set of baselines on L1 , we have bi < 2bi-1 except for the shortest pair of
baselines.

The cosine on L 1, t 1, is determined by walkup through all baselines indicated in the Table
(The ones up to 194v'2 inclusive are independent of Ov2), testing each successive estimate.
If

i - c-I I > .25/;i,

then a weighted least squares estimate is performed (as described in the next Subsection)
on the baselines and phases up to i (but not including the ones that depend on 4Ov2) to
redetermine c,, using c-I as the initial estimate. Since OV2 has not yet been chosen (see
above), baselines dependent on OV2, c wil! include a random error, which is likely to trigger
the least squares process to recalculate c without using baselines dependent on qv2.

After the walkup has proceeded through the longest L1 baseline, regardless of whether
the resulting c, meets the 0.25/bi tolerance, a least squares fit is performed for t4 using
baselines independent of OV2. This allows a determination of OV2, choosing from Eq. (4)
the value for Ov2 whose phase difference with respect to antenna 4 (see Fig. 4) most closely
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Table 3: Antenna pairs used to create baselines

L, L2

Baseline Antennas Baseline Antennas
1200 V1-4 1200 12-1
1110 9-4 1180 11-10
1082 8-4 1136 10-1
916 9-5 912 12-6
888 8-5 892 11-6

830 7-4 848 10-6
636 7-5 600 12-V2
600 V2-4 580 11-V2
510 9-V2 536 10-V2
482 8-V2 312 V2-6
406 V2-5 288 6-1
370 V1-7 194 5-4
280 9-7 64 12-10
252 8-7 44 11-10
230 7-V2 20 12-11
194 5-4
118 V1-8
90 V1-9
64 12-10
44 11-10
28 9-8
20 12-11
18 11-10 V1-9 12-10
16 11-10 9-8
14 12-10 V1-9 12-11'
12 12-11 12-10 11-10 9-8
10 9-8 11-10 V1-9 12-10

8 9-8 12-11
6 V1-9 12-10 12-11
4 12-11 11-10 9-8
2 12-10 V1-9 9-8

* The 201V2 foot baseline is used twice.
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matches the phase difference calculated for a 60OV2 foot L1 baseline. The phase differences
which use OV2 are recomputed. Provision is made for a final least squares fit to be performed
on t1, this time using all the baselines. The final least squares fit on e is not done if the
penultimate estimate is considered adequate. See the next Subsection.

This final value of f, is used as the starting value for E2, on which a walkup is performed,
first to the 194V2 foot baseline of L1, and then on longer L2 baselines. A least squares fit
is performed on t 2. Finally, these values are rotated back into north-south and east-west
components using Eq. (1).

5.3 Least Squares Adjustment

During the processing described in the previous Subsection, the direction cosines 11 and f2
are corrected with a least squares fit to the phase differences 4i using Oi = 2jbi (derived from
Eq. (3)) as the model. The partial derivatives involved are

NJ_= b_ .

Since there is only one parameter being adjusted (41 and f2 are handled separately) the
differential corrections to f, and 2 are the solutions, At, and Af 2, of scalar equations and
given by:

Zwtbibi (Oi - bit)
A~j = E wtbib (5

where j = 1, 2 and the sums run over the baselines used.

There is no tolerance test for the residuals in the least squares, but not all of the baselines
are used. During the 4l walkup, if a least squares fit is performed for L1 baselines up to
(and including) 194v'2 feet (this happens, for example if Ici - ciII > .25/bi), all baselines up
to the present one are considered, including the three short L 2 baselines and all the virtual
baselines (from 2v2- to 18v2- feet). For walkup on longer baselines, the shortest nine and
the L 2 baselines are excluded, so it starts with 28v"2; it does not use the ones that use PV2.

After the first least squares for the 1200v'2-foot baseline (which does not include the L2 or
OV2 baselines), then a test is made. If

-1 wtbi(Oi - bVX)
A . 2< 10- ,  (6)
E wtb, -

where Nb is the number of baselines involved in the least squares (14 in this case), then
the new value, 41 + At 1, is accepted, and there is no final least squares step for ei. If the
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inequality does not hold, then after the final least squares step for 11, the left hand side of
Eq. (6) is recomputed. The numerator is the sample variance of the previous estimate of 11,
and the denominator is the theoretical variance of the new estimate. The final (extra) least
squares correction step of ii (if performed) includes the baselines which use Ov2, it having
been determined ii, the meantime. During 12, including its final least squares correction
step, if the walkup step requires least squares, all baselines on L2 (up to the present one)
are used.

The weight, wtbi, for the baseline bi is determined from the variances, Varai and Vara2,
of the (real or virtual) antennas, al and a2, comprising bi:

wtbi = 1/ (Varai + Vara2 ).

The virtual baselines are assigned weights equal to the sum of the weights of the baselines
comprising the virtual baselines, except that the baseline of length 12v'2 feet gets the weight

wt 12 = wt 28 + 1 (wt 20 + wt 44 + wt64),

where the subscripts identify the baseline length (except for the v/). The 14vr2 feet baseline
includes the 20v"2 feet baseline twice, so its weight is added twice in the sum for the weight
of the virtual baseline.

For the weights assigned to virtual baselines to be mathematically consistent with those
of physical baselines, one would use the inverse of the sum of thc variances of all of the
antennas involved.

5.4 Data Quality Check

Before continuing to the Doppler and chirp processing, the quantity in Eq. (6) is tested. If
it is more than 10- 81, the cosine determination is assumed to have failed. It is possible that
after the first least squares fit of 41 on the 1200 V2 foot baseline, the inequality in Eq. (6)
holds, so that a final least squares fit f- .1 is not made, but that the left hand side is larger
than 10- s , so that the direction cosine resolution is considered failed.
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6 Doppler and Chirp

A 512-point FFT is applied to an array containing the cosine and sine of

27r(AO(n) - AO(n- 1)),

the increments of the phase history determined in Section 4, weighted by

wtf wtf "_1

wtf, + wtf,,_1

The resulting power spectrum is smoothed with 3-point triangular smoothing:

Pi -== .22 (Pi- + 2.545P, + Pi+,),

and Co is chosen as the bin number of the peak power (only indices 497-512, and 1-48 are
checked), adjusted somewhat by the strengths of the neighbor bins. Then a 64-point FFT
is applied to the array consisting of the cosine and sine of

2.r ((n) - ),

weighted by wtfn, and the power spectrum is smoothed. The bin number of the peak is
chosen as Do.

The values Do and Co just determined are used as initial values of the differential Doppler
and chirp for a least squares estimate best fitting the phase difference history, AO(n). The
calculated values are given from the model as

c(n) = -AO + D t, + 2Ctn,

with AO initially AO(O), the adjusted phase difference profile value at frame NFTO from

Section 4, and D and C the differential Doppler and chirp, initially Do and Co. The partial
derivatives are

ac(n) 8c(n) ac(n) 1 2
=t2

O¢ - D- t OC 2 -

These form the nth row of the matrix A. The normal equation is then

n 2, nt,' A¢ wtf, (A¢(n) -c(n)
3)

- wtfn t t n tJ AD = ( wtftn(A¢(n)-c(n))

1t2 
1

t
3 

14 AC /
n 2, n , AC n)wtf(A(n)-c(n))
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where the sums run over n. The first iteration is carried out without a tolerance requirement
for the residuals. For the second iteration only observations meeting the tolerance

wtf,( -c(n)) < To,

are allowed, where

To, = 4 max S2 1}

and S 2 is the weighted sum of the squared residuals from the first iteration.

After the second iteration, if the dot product of the quantities AtW(O - C) and the
applied correction is more than 20% of 82, the weighted sum of the squared residuals which
met the tolerance during the second iteration, a third iteration is made, with a new tolerance:

T., = 4 max S2(So 3),IJ,

where So is the number of observations that met the tolerance in the second iteration.

The final value of D is multiplied by the sample rate and added to the receiver bin center
frequency to yield the Doppler. The chirp is C times the square of the sample rate.

The bin sizes for Doppler and chirp (before the triangular smoothing) are 0.86 Hz and
5.9 Hz/sec, respectively, with ranges of ±27.5 Hz and [-94.5,284.61 Hz/sec, respectively.
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A Least Squares

The term least squares is used to mean any process of minimizing a squared difference.
The best known example is fitting a curve to measurements, but there are many scientific
and engineering applications of the technique, which may be viewed as a generalization of
the curve-fitting problem. The theory is developed in many places including pp. 123-5 of
[Bate], and will not be repeated here. We now summarize the method (and standardize the
notation):

We are given a set of parameters {Pj}, which are to be improved or determined from
consideration of a set of observations {Oi}. In the usual case there are more observations
than parameters. The model is a functional relationship (or "fit") 0 = f(P), so form the
calculated values, Cj = fj(Pi), and let A be the matrix of partial derivatives:

Aij - agfi
0dpi,

and let the weight matrix W be the diagonal matrix whose elements are the weights assigned
to each observation. The theory says that P can be improved to P + AP where AP is the
solution of the normal equation

AtWA AP = A t W(O - C).

In terms of matrix elements, we have

(AEA).f "f weightobs,
(At WA)J = O P 3Pj

and the right hand side is given by

(AtW(O - C))j = b a-jweighto(O - C).

The matrix AtWA is known as the inverse covariance because (AtWA) - 1 gives the co-
variance matrix for the new estimates. In particular, its 1th diagonal entry is the variance
(square of the standard deviation) of the estimate of the 1t parameter.
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